
Software Testing Plan

Nov 11, 2022

Team Sponsor: Alexander (Allie) Shenkin
Team Mentor: Daniel Kramer

Team Instructor: Michael Leverington

Document produced by

Austin Malmin, Conrad Murphy, Charles Saluski, and ShanHong “Kyle” Mo

Version 1.0



Introduction 3

Unit Testing 4
Hardware Testing 4

Raspberry Pi 4
LiDAR Sensor 5

Navigation Module 6
ROS Testing 6

ROS Talker and Listener Nodes 7
Compiler 7
RPLiDAR Library 7
HectorSLAM Library 8

Integration Testing 8
Hardware Testing 8
Hardware with Software Testing 9
Scripts and Commands 10

Usability Testing 10
Installation Guide 10
User Manual 11

Conclusion 12



Introduction
In the world of automation, normal mundane tasks are being replaced by artificial

intelligence that can perform these jobs at higher efficiency and with better accuracy.

The world is starting to see a breakthrough in the field of robots and drones that perform

tasks autonomously. Today, humans are currently performing tasks that can easily be

automated with self-guided drones. Search and rescue missions can prove to be

dangerous in places not easily navigated by humans, such as collapsed caves, house

fires, war zones, etc., but a drone could make these missions safer and more efficient.

Amazon has already taken use of autonomous drones in their delivery of goods

throughout the United States and the United Kingdom. Drones can dust crops with

greater precision and cheaper cost than planes piloted by humans. Our focus is the use

of drones to aid in the study of rainforest ecosystems.

Mapping the upper and lower forest canopy currently requires a researcher to manually

move a ground-based sensor through the forest which is time-consuming and difficult.

The sensors used are Light Detection and Ranging (LiDAR). LiDAR sensors measure

the time for a laser beam to return once fired to determine the distance of the object

from the sensor and create a 3D model of the environment, whether on land or on the

seas. Ecologists perform research focused on how forests around the world respond to

climate change and simulate the effects certain changes in the climate would have on

the environment. Team Mockingbird is working with Dr. Allie Shenkin to build an

autonomous drone navigation system.

Our vision for Project Glasswing is a system with the end goal of guiding a drone

through the rough forest environment quickly. We will not work with a drone ourselves,

but future work may be done to mount the system to a drone. The system will use a

LiDAR sensor for mapping its surroundings and saving it to permanent storage for

future study, while other sensors will serve the role of object detection and avoidance to

avoid crashing into branches and vines. A successful project will drastically improve Dr.

Shenkin’s research on the effects of climate change on our rainforests.



Unit Testing
Unit testing is the idea of testing each individual component separate from the system to

ensure that each component in a system works and just needs integration testing with

other components, more on that to come later. Our System has 3 different categories of

“Units” to test which are hardware, navigation algorithms and ROS.

Hardware Testing

When testing our hardware, it is important to acknowledge that this will be a never

ending process. Over time hardware will depreciate and eventually need to be replaced

even with no fault of the user. In our hardware testing, we will be focused on measuring

performance of the different components, not necessarily if the hardware is functional or

not.

Raspberry Pi
Figure 1: Raspberry Pi

Figure 1: shows an image of the raspberry pi used for this project.



In order to test our Raspberry Pi there are a couple metrics we can measure: computing

power and memory speed. We can test the Raspberry Pi’s computing power by running

various pieces of our code with the htop command active and monitoring the CPU

utilization. The htop command displays all the cores of the raspberry pi and each cores

utilization. This will accurately determine what the Raspberry Pi is capable of handling

before it throttles speeds down and is unable to compute anymore. The outcome for this

test will be a deepened understanding of the actual computing power of our Raspberry

Pi. Similarly, we will also need to test the memory write speed of our SD card nested

inside the Pi. This can be done with the IOPing package and this package will test the

memory speed and display its performance. Utilizing this package will provide us an

exact understanding of how much data can be written to the SD card and how quickly.

LiDAR Sensor
Figure 2: RPLiDAR A1

Figure 2: shows an image of the LiDAR device used for this project



The RPLiDAR is a brand of LiDAR sensor that registers objects around it in a two

dimensional space. This piece of hardware is unique as we want to measure its

efficiency at measuring size of objects and at different distances. Our team will test the

device by having different sized objects varying from size of 1 centimeter in diameter to

objects of 1 meter in diameter. All of these objects inside the test suite will be measured

at distances ranging from 0.5 meters up to 15 meters. We will start with objects 0.5

meters away from the LiDAR and move back 1.5 meters at a time until the object is no

longer visible to the device.

Navigation Module

The navigation module takes the map generated by the SLAM process and the robot’s

current calculated position and a desired end position and calculates a movement plan

for the robot. We will test this module by constructing simple scenes in Gazebo, a

simulation environment for ROS, and checking that the navigation system is able to

navigate through the scene in an expected manner. We will also test that when a goal is

given that does not have a reasonable solution, such as being outside of a closed room,

that the robot does not erroneously attempt to navigate through the wall.

We will also validate the movement commands that the navigation module generates for

the robot, by having a set of expected paths that the robot might take, and validating

that the movement commands that the module sends to the robot are within an

expected margin of these baseline paths.

ROS Testing

ROS is a framework which supports drivers for sensor hardware and open-source

libraries for mapping tools, all of which can be easily run on one central platform. Our

hardware and sensor libraries all directly connect with ROS in some way through talker

and listener nodes, so we will be testing whether these nodes work as intended. We will

also test ROS’s compiler, as well as the individual ROS mapping libraries we use, which

are RPLiDAR and Hector SLAM.



ROS Talker and Listener Nodes
ROS uses talker and listener nodes to interact with other components and their data.

Since these nodes are what hold our entire system together, it is crucial that they can

send and receive data properly. Fortunately, ROS provides debug output in the terminal

which shows whether communication with other components succeeded or failed.

Therefore, we simply need to run each component and see that there are no errors

output by ROS in the terminal. This means running the LiDAR sensor and launching the

RPLiDAR and HectorSLAM programs in isolation. The tests will succeed if ROS is able

to communicate and interact with them without indicating failure.

Compiler
ROS has a built-in compiler which builds executable code from the source libraries in

the src folder. The compiler is invoked using the command catkin_make. To ensure that

the compiler works properly, we will clean out our previously built executables, then run

catkin_make to compile the software again. If the compiler works, we expect that all

code will be compiled smoothly without any errors. After the code is compiled, we must

run a source command to ensure that the code is runnable in ROS. At this point, we can

test if the compiled code functions correctly by running our individual ROS libraries.

RPLiDAR Library
The RPLiDAR library is provided in the ROS framework. This library interprets the point

cloud data from an RPLiDAR sensor and outputs the LiDAR data on a visual display

program built into ROS called RViz. This display updates in real time, so that the

detected objects can be seen in real time. To test that this component runs without

errors, we simply launch the library through ROS’s command line interface and ensure

that RViz opens up as required. The program does not open if a LiDAR is not detected

in the computer’s USB port, so our tests can also ensure that ROS interfaces with the

LiDAR as required.



HectorSLAM Library
Our system uses a library provided in the ROS framework called HectorSLAM. This

library performs SLAM (Simultaneous Localization and Mapping), a process in which a

robot moves while tracking its position in the environment and maps the surrounding

space in real time. HectorSLAM takes LiDAR data as input and produces a map on

RViz. To test that this component runs without errors, we simply launch the library

through ROS’s interface and ensure that RViz opens up as required.

Integration Testing
Due to the nature of the team’s capstone project, we focus on integrating hardware with

each other and with existing open source software. Due to this, a lot of testing requires

understanding of the purpose of each hardware and how they integrate with others.

Hardware Testing

For starters, all machinery requires some form of power in order to function, so to make

sure of this, the team will need to test if the Raspberry Pi gets enough power to itself,

which is easily tested by checking if the cord that the supplier brought to us works as

intended. After that, we need to test if the Pi passes enough power to its attachments

such as cameras and LiDAR. For this part of the project, we not only need to test if the

cord the team is using can provide power, it also needs to check if data can pass

through it as well. Throughout the duration of this project, the team tested many

different hardwares, excluding the Pi which is the step we already covered, one of which

being a 2D LiDAR and different cameras such as the Intel RealSense camera. Due to

the nature of the price of LiDAR and the limited budgets, we tested backpack hardware

such as cord, only to realize that many cords we possess only pass power and data,

thus the cord that was provided is difficult to replace if damaged or lost. We also had to

test the memory card, which was simple and difficult as testing it just requires the team

to put it in, but unfortunately there are fakes that are difficult to figure out the problem

without prior knowledge, due to that the team is required to purchase a new one.



Hardware with Software Testing

After confirming that all the cord can pass power and allows data passage, basically

after checking that all hardware is working as intended, the next step is check how

software integrates with each other. In order for our project to succeed, the team needs

to find a working ROS with a functional SLAM library for the hardwares we are using.

After finding a ROS, in our case the teamused both ROS1 and ROS2 with ROS1 being

used for the hardware we currently possess and ROS2 is used to work with a virtual

robot to test out simulations. The testing for SLAM requires selecting the best fit

packages fitted to our needs, which usually can be determined by the hardware we are

using as there are recommended SLAM for each type of hardware. In order to test

SLAM, the team has to have a working ROS with the proper version as well as it works

with RViz (ROS Visualization) which is a program that allows users to see a perception

of what the robot (both real or virtual) sees from a bird’s eye view. After making sure that

all the software can be properly executed, we then tested if the hardware works as well

which is done by simply executing the program with a set of instructions, so in case of

LiDAR, plug in LiDAR to Raspberry Pi and execute the instructions. After making sure

that there are no issues opening up softwares, the team needs to test if the data can

pass through such as ROS passes the output to SLAM for mapping, this is true for all

hardwares. This can be tested by doing a test run, for a LiDAR, the team will walk

around to see if it can detect walls and objects, this is the same for cameras as well.

After making sure all the functions of the hardwares and softwares are working as

intended, we need to make sure that the maps and data can be stored properly, usually

this isn’t a problem due to the fact that all ROS version have a save file function, unless

the data size is too large, which is the case for the RealSense camera, as the memory

card we possess is limited due to budget constraints.



Scripts and Commands

As we are the spearhead of this project that will be passed down to future groups, we

wrote a bash script that allows the team and future teams to execute our program using

one line of command which usually requires opening multiple terminals and multiple

sets of commands. This bash script code is easily tested by finding the path that we

need to take in the terminal and implement it in a script. As for the ROS2 and the virtual

robot, it is required to put in commands in the terminal to access certain functions unlike

testing LiDAR and cameras in which all functions exist in the ROS interface. Not only

that, the team needs to make sure that the programs are able to exit gracefully, which

can be done using CTRL-C in the Linux terminal.

Usability Testing
This is a unique project as it does not have an “End User.” Our project is being

continued by an electrical engineering capstone team who will take this project and

build upon it to bring it to as near to completion as they can. Therefore, they are the end

users as they are the ones who will interact with our product. A successful usability test

would require them to spend minimal time to get our system up and running on their

machines with little headache. In order to accomplish this, we will create 2 documents to

help them: an installation guide and a user manual.

Installation Guide

Throughout this project, our team has been finding different ROS packages that can be

installed and utilized successfully. Surprisingly, this was quite a challenge to find

working packages in combination with our hardware and a compatible version of ROS.

In the end, our team found the following items to work together:

● Operating System: Ubuntu 20.04

● ROS: Noetic Ninjemys

● Slam Package: HectorSlam

● LiDAR Node: RPLiDAR



These packages each have their own unique install instructions. In order to ensure the

success of the system, our team will create an installation guide with detailed steps and

links to helpful articles about how to install and test the installation of each package.

With this document, the installation process should be streamlined and much more

accessible for the teams to come after us.

User Manual

Now that everything has been installed for future teams, it is critical that they have a

clear understanding of how to use the system. Currently, the process to run the system

involves 2 command line terminals, an RViz window to view the output of the LiDAR and

a plethora of commands. While to our team, this is not a problem as each member has

an in-depth understanding of the system and its file structure paired with a background

in computer science, to a group of electrical engineers this could prove to be complex

and an issue. Team Mockingbird has 2 solutions to this problem: immense

documentation and simplifying the process of running the system.

Each node inside of ROS has a launch file. Inside these files are details of exactly what

will happen upon the initialization of the specific ROS node. These things can vary from

the frame rate at which the LiDAR node scans, to the type of output that is displayed in

the Rviz visualization window. With such widespread applications it is important to

clearly state what the code is doing inside each portion and what the effects of certain

changes are. This is done by adding documentation to the launch files. This way, when

problems occur, troubleshooting can be an easier process.

The next task is to simplify the process of running the system. For this, our team takes

inspiration from the launch files that exist for each ROS node. Our team has decided to

make a bash script to run the commands necessary to get the system up and running.

This script needed to be simple to use, effective, and provide appropriate messaging to

the user. The bash script performs similar operations to the launch files as it contains

the configuration for the system. The best part of the bash script is that it reduces the

process of opening multiple terminals and several lines of code to one simple command



with no command line arguments. This should ensure that future teams can access and

run the system with ease.

Conclusion
Autonomous drones are a major advancement in many different fields of study and

service, including the study of intricate details in the rainforests. Dr. Alexander Shenkin

is a researcher and climatologist who is attempting to create detailed maps of plots of

forested land. His current workflow is slow and tedious, requiring large investments in

time and manpower in order to create a map which omits crucial data. This approach is

unwieldy and unsatisfactory, and a better solution is needed.

Our mapping system will greatly improve Dr. Shenkin’s workflow in his study of the

rainforest, allowing for faster and more efficient data collection from our ecosystems.

This data will help us understand our environment, revealing important conclusions

such as the effects of climate change and the mitigation of carbon in the atmosphere.

In order for this system to be as useful to Dr. Shenkin as it can be, it needs to be

dependable as it will be mounted to expensive drones and the system itself is built with

expensive components. This software testing plan ensures that each piece of the

hardware not only functions correctly on its own but also when connected with each

other component inside the system. We will create a user manual to pass on to future

users in order to better use our system and make sure its simple to use and easy to

install. Our navigation package will be tested and documented so that all behavior from

the navigation instructions can correlate to some behavior described in the user manual.

By testing all 3 of these components, we can ensure that our system will be reliable and

predictable as long as the lifespan of the hardware. This will enable Dr. Shenkin to get

back to mapping environments and performing cutting-edge research.


